HIGH ENERGY PHYSICS – TELESCOPING THE PLANCK SCALE –

Target of High Energy Physics

 \Rightarrow Unraveling basic laws of physics : matter and forces \Rightarrow Platform for composition/evolution of Universe

$$\frac{\text{Exp access}}{\text{electroweak scale}} \sim 10^{-8}/10^{-13} \text{ cm}$$

$$= \text{electroweak scale} \sim 10^{-14}/10^{-16} \text{ cm}$$

$$\Rightarrow \underline{\text{Tera-scale}} \sim 10^{-17}/10^{-18} \text{ cm}$$

<u>Accelerators</u> : LHC / pp : 14 TeV $\Rightarrow eff \sim 5$ TeV LC / e^+e^- : ILC/CLIC $\Rightarrow 0.5$ to 3 TeV

• Window to composition/evolution of the Universe

exploring composition of matter in Universe \Rightarrow <u>Cold Dark Matter</u> # evolution studied directly for times > 10⁻¹⁰ sec

[QCD phase transition from quarks to hadrons]

Telescoping Planck scale

 $M_{PL} = 1/\sqrt{G_N} = 1.2 \cdot 10^{19} \text{ GeV}$

corresponding to 10^{-33} cm $\sim 10^{-43}$ sec

- # scale of ultimate unification: all forces, including gravity, of similar strength seed area of matter and forces
- :: canonically no direct experimentation at $M_{PL} \sim 10^{19}$ GeV /mod. P decay
- :: hope for theoretical set-up that allows telescoping the Planck scale scenario experimentally from Tera scale : Supersymmetry \Rightarrow GUT \Rightarrow String theory Extra space dimensions : $M_{PL} \Rightarrow 1$ TeV

 \leftarrow How are the prospects?

1. STATUS OF PARTICLE PHYSICS / SM

Particle Physics has been tremendously successful in unraveling the fundamental laws of nature at subatomic scales:

STANDARD MODEL OF PARTICLE PHYSICS

Glashow, Salam, Weinberg Fritzsch, Gell-Mann

<u>Constituents of matter:</u>

quarks/leptons in 3 families with large spread of masses : ν 's < eV \Rightarrow top ~ Au

- 1st family \sim standard matter
- 3 families needed for asymmetry between matter and antimatter

1. STATUS OF PARTICLE PHYSICS / SM

Particle Physics has been tremendously successful in unraveling the fundamental laws of nature at subatomic scales:

STANDARD MODEL OF PARTICLE PHYSICS

Glashow, Salam, Weinberg Fritzsch, Gell-Mann

<u>Constituents of matter:</u>

quarks/leptons in 3 families with large spread of masses : ν 's < eV \Rightarrow top ~ Au

- 1st family \sim standard matter
- 3 families needed for asymmetry between matter and antimatter

<u>Fundamental forces</u>

3 particle forces : electromagnetic | weak | strong

 γ Einstein | W^{\pm}, Z CERN $Sp\bar{p}S$ | g DESY Petra

spin = 1: quantum theory

 \oplus gravity : classically attached ad-hoc

spin = 2

Fundamental forces

3 particle forces : electromagnetic | weak | strong : $SU(3) \times SU(2) \times U(1)$

 γ Einstein | W^{\pm}, Z CERN $Sp\bar{p}S \mid g$ DESY Petra

spin = 1: quantum theory

 \oplus gravity : classically attached ad-hoc

spin = 2

Weyl, [Yang, Mills]: Particle forces generated by invariance under gauge transformations

[Brout-Englert-] Higgs Mechanism

Weyl symmetry destroyed by adding non-zero masses ad-hoc

 \Rightarrow theory physically not closed

preserved however if masses generated by interaction with <u>scalar vacuum field</u>

Standard Model: without Higgs mechanism incomplete

 $\Leftarrow \text{ open effective model}$

with Higgs mechanism : mathematically closed theory

Higgs Rationale

– LEP etc: precision measurements \Rightarrow

$$M_H = 84^{+34}_{-26} \text{ GeV}$$

- LEP : direct search $\Rightarrow M_H > 114 \text{ GeV}$

Higgs Rationale

- LEP *etc* : precision measurements \Rightarrow $M_H = 84^{+34}_{-26} \text{ GeV}$

Light Higgs: particles remain weakly interacting up to Planck scale – \oplus grand unification \Rightarrow successful prediction of electroweak mixing: $\sin^2 \theta_W \simeq 0.2$ \Leftarrow first successful hep telescope operation <u>Alternatives:</u> # Higgs bosons become strongly interacting at high energies pointlike \Rightarrow composite Higgs particles Technicolor, Little Higgs, ... # Higgs \Leftarrow 5th gauge field in extra dimensional space # no Higgs \Rightarrow strong WW interactions

or theory modified fundamentally at energies $\sim 1 \text{ TeV}$

SM unitarity : either Higgs boson discovered with mass below 1 TeV

Higgs Search

- LHC : SM Higgs particle will be discovered over entire mass range < 1 TeV
- LC : Higgs mechanism *sui generis* established in model-independent way

8

STANDARD MODEL: \Rightarrow valid description of nature, formulated at Fermi electroweak scale $\langle H \rangle \simeq 174 \text{ GeV}$ - but physically incomplete theory of nature

Open questions: FUNDAMENTAL LAWS OF PHYSICS

- grand unification of 3 particle forces
 ⊕ gravity / ultimate unification
- Higgs / pattern of particle masses and mixings
- symmetry concepts for forces and matter

COSMOLOGY

- nature of Cold Dark Matter
- baryon asymmetry in Universe
- cosmological constant / dark energy
- structure of space and time at small distance

 \Leftarrow

Comment: None of the open questions necessarily requires solution seeded at the Tera-scale but solutions at the Tera-scale are most suggestive to some # SM FOREVER : light Higgs & nomore [other] new phenomena up to GUT/PL energies $CDM \sim cosmological \ axion > 10^{10} \ GeV$ $\sin^2 \theta_W \simeq 0.2$: further details by yet unknown GUT scale physics

SUPERSYMMETRY : stabilizing bridge from Fermi to Planck scale

 $\sin^2 \theta_W$ predicted accurately

offering natural candidate(s) for CDM

EXTRA-SPACE DIMENSIONS : reducing M_{PL} to Tera-scale

2. SUPERSYMMETRY

Attractive extension of SM :unifying bosons \sim fermionsleptons [1/2] \sim sleptons [0]quarks [1/2] \sim squarks [0]gluons [1] \sim gluinos [1/2]photon, ...[1] \sim photino, ...[1/2]Higgs' [0] \sim higgsino' [1/2]graviton [2] \sim gravitino [3/2]

 \Leftarrow solving key problems in a natural way :

Golfand, Likhtman Volkov, Akulov Neveu, Schwarz, Thorn Wess, Zumino

11

SUPERSYMMETRY \Rightarrow

grand unification of 3 particle forces at one per-cent level

SUPERSYMMETRY \Rightarrow

- grand unification of 3 particle forces at one per-cent level
- Higgs mechanism \Rightarrow spontaneous symmetry breaking predicted
- $\text{ local supersymmetry } \Rightarrow \underline{\text{gravity}} \text{ in analogy to}$ $\text{ local gauge invariance } \Rightarrow \text{ electromagnetism}$
- natural candidate(s) for <u>Cold Dark Matter</u> $\sim 100 \text{ GeV}$:
 - # lightest neutralino
 - # gravitino

Central problems: breaking of supersymmetry ?

 $m[\tilde{e}] \gg m[e]$

no phenomenological upper mass limit

[depending on controversial $\Delta[g-2]_{\mu}$ determination]

Weinberg

Primack

SUPERSYMMETRY \Rightarrow

- grand unification of 3 particle forces at one per-cent level
- Higgs mechanism \Rightarrow spontaneous symmetry breaking predicted
- local supersymmetry \Rightarrow <u>gravity</u> in analogy to local gauge invariance \Rightarrow electromagnetism
- natural candidate(s) for <u>Cold Dark Matter</u> $\sim 100 \text{ GeV}$:
 - # lightest neutralino
 - #gravitino

Buchmüller ea / SPS1a'

Discovery of Supersymmetric Particles

• LHC : $pp \rightarrow \tilde{q}\tilde{q}, \tilde{g}\tilde{g} \dots : \tilde{m}$ up to $\sim 3 \text{ TeV}$

allowing mass measurements \sim per-cent level

High-precision supersymmetry data allow extrapolation to

GUT/PL SCALE:

RECONSTRUCTION OF SUPERSYMMETRIC THEORY / SUSY BREAKING

masses in mSUGRA universal at GUT, in parallel to gauge couplings $_{\rm Blair\ ea}$

14

INTERMEDIATE SCALES

suggested by :	<u>Seesaw mechanism</u> in ν sector		Minkowski, Gell-Mann ea,
	Leptogenesis:	matter-antimatter asymmetry	Yanagida
		in Universe through ν_R decay	Fukugita ea, Buchmüller ea

50

Seesaw mechanism:

 $m_{up}/m_{down} \sim 1$ to 10 $m_{\nu}/m_{\ell} \sim 10^{-6}$

<u>solution</u>: coupling of heavy-mass particle to zero-mass particle generates non-zero mass but very light particle: $m_{\nu}^{exp}[heavy] < M_{GUT} \sim 10^{16} \text{ GeV}$ $m_{\nu}^{exp}[light] \sim v^2/M_{GUT} < \text{eV}$

Heavy ν_R in 3rd generation affects evolution of scalar susy masses :

universality \oplus measured slepton masses at Tera-scale \Rightarrow estimate : $M_{\nu R} \sim 10^{14} \text{ GeV}$ 4030 10^{13} 10^{14} 10^{15} 10^{16} Blair ea

COLD DARK MATTER

<u>observation</u>: 24% of energy density in Universe appears to consist of invisible matter ~ 5 times visible matter

> <u>nature not yet clarified</u> : one component ? many components ?

strategies: # study CDM interactions with matter in laboratory # search for astrophysical signals [annihilation,..]

> # determine properties of CDM candidates in collider experiments LHC/LC and predict relic density

Supersymmetry: adopting discrete symmetry suppressing \mathcal{P} -decay: R_P : lightest supersymmetric particle stable # 1 Lightest neutralino $\tilde{\chi}_1^0$:

 $\tilde{\chi}_1^0 = \text{complex mixture of photino, higgsino, etc} \Rightarrow$ precise measurements of masses and mixing needed
to predict relic density

 $\Leftarrow \text{ Planck satellite}: \Delta\Omega/\Omega \sim 1\%$

 $\tilde{\chi}_1^0 \text{ LHC measurements } |$ ILC[1 TeV] measurements :
Baltz ea

	low \tilde{m}_0	high $ ilde{m}_0$
LHC	10%	80%
ILC	2%	8%

difficult to match cosmological data when aiming at a high-resolution
 picture of CDM beyond qualitative comparison
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data when aiming at a high-resolution
 [additional content of the second data
 [additional content o

1 Lightest neutralino $\tilde{\chi}_1^0$:

 $\tilde{\chi}_1^0 = \text{complex mixture of photino, higgsino, etc} \Rightarrow$ precise measurements of masses and mixing needed
to predict relic density

2 Gravitino \tilde{G} :

 \tilde{G} gravity coupling to matter very small \Rightarrow standard lightest susy particle long-lived : $\tilde{\tau} \rightarrow \tau + \tilde{G}$, etc metastable non-relativistic particles

$# 3 \underline{\text{Variants}}:$

- schemes w R_P slightly broken $\Rightarrow e^+, \bar{p}, \gamma, \dots \sim P_{\text{amela, AMS}}$. Buchmüller ea
- LSP in secluded light sector \Rightarrow multi-lepton final states ~ CDF? Arkani-Hamed ea

3. EXTRA-SPACE DIMENSIONS

Hierarchy problem $v \ll M_{PL}$: SM forever : ignoredSupersymmetry : stability solvedxtra space dimensions : removed

Antoniadis Arkani-Hamed ea Randall, Sundrum

Basic ADD scenario : Planck-scale reduced to Tera-scale

 \Leftarrow gravity strong in D > 4 dimensions

apparently weak only in projection to D = 4 dimensions

• higher dims wrapped up on small circles \Rightarrow Kaluza-Klein KK_G excitations $pp/e^+e^- \rightarrow KK_G + X$: escaping $KK_G \Rightarrow E_{miss}$:

new Planck scale M_{PL} and dimension D

19

3. EXTRA-SPACE DIMENSIONS

Basic scenario : Planck-scale reduced to Tera-scale

 \Leftarrow gravity strong in D > 4 dimensions

apparently weak only in projection to D > 4 dimensions

• higher dims wrapped up on small circles \Rightarrow Kaluza-Klein KK_G excitations

 $pp/e^+e^- \to KK + X$: escaping $KK \Rightarrow E_{miss}$

measure E_{miss} by varying total energy : new Planck scale M_{PL} and dimension D

• <u>Mini-black hole</u> : mass $M_{BH} \sim M_{PL}/(M_{PL}R)^{D/(2+D)} \sim \text{TeV}$ lifetime $\tau_{BH} \sim G_N^2 M_{BH}^3 \sim 10^{-26} \text{ sec}$

[backed by astrophysical/cosmological observations]

20

THEORETICAL TEAOS

<u>SUPERSYMMETRY</u> : most attractive path to the Planck scale

but needs embedding in extended theory for quantum gravity

<u>SUPERSTRINGS</u> : consistent theory of quantum gravity

- $\Rightarrow \text{ landscape of some } 10^{500} \text{ vacua}$ no principle known to single out <u>one</u> state
- $\Rightarrow 10^{500}$ coexisting universes in a Megaverse ?

"3rd Copernican Revolution!"

SUMMARY

1 : Standard Model must be completed by Higgs or modified at Tera-scale :

- light Higgs discovered as suggested by precision data
- elw gauge bosons strongly interacting at Tera-scale, xtra dimensions and new KK states
- # 2 : If Higgs light, fields weakly interacting up to Planck-scale but gap between Fermi and Planck-scale unstable :
 - $\Rightarrow \frac{\text{Supersymmetry most natural solution}}{\text{smooth path to Planck scale}}$
 - \Rightarrow completed by superstring /w fascinating new cosmology ?
- # 3 : Extra-space dimensions ?

. . .

gravity strong nearby and Planck-scale at Tera-scale?

LHC : opening window to the microscopic world of matter and forces at Tera-scale :

- solving problem of mass and

building platform for telescoping Planck scenario with unification of matter and forces

- connecting particle physics with cosmology in clarifying nature of Cold Dark Matter
- C : picture after LHC remains coarse without high-precision lepton collider ILC/CLIC,

sharpening telescope resolution by order of magnitude \Rightarrow

TERA-SCALE EXPERIMENTS ESSENTIAL IN SHAPING THE FUNDAMENTAL PICTURE OF OUR WORLD

Rolf

returning back to Hamburg in 5 \dots years :

– hopefully not without a bag filled with

a few Higgs bosons
and many supersymmetric particles?
– or mini-Black holes?
– or something Unexpected?

Viel Erfolg mit LHC!

